SparseAssembler2: Sparse k-mer Graph for Memory Efficient Genome Assembly

نویسندگان

  • Chengxi Ye
  • Charles H. Cannon
  • Zhanshan Ma
  • Douglas W. Yu
  • Mihai Pop
چکیده

Motivation: To tackle the problem of huge memory usage associated with de Bruijn graph-based algorithms, upon which some of the most widely used de novo genome assemblers have been built, we released SparseAssembler1. SparseAssembler1 can save as much as 90% memory consumption in comparison with the state-of-art assemblers, but it requires rounds of denoising to accurately assemble genomes. Algorithmetically, we developed an extension of de Bruijn graph structure — 'sparse de Bruijn graphs' — skipping a certain number of intermediate k-mers. In this paper, we introduce a new general model for genome assembly that uses only sparse k-mers. The new model replaces the idea of the de Bruijn graph from the beginning, and achieves similar memory efficiency and much better robustness compared with our previous SparseAssembler1. Results: Based on the sparse k-mers graph model, we develop SparseAssembler2. We demonstrate that the decomposition of reads of all overlapping k-mers, which is used in existing de Bruijn graph genome assemblers, is overly cautious. We introduce a sparse *To whom correspondence should be addressed. k-mer graph structure for saving sparse k-mers, which greatly reduces memory space requirements necessary for de novo genome assembly. In contrast with the de Bruijn graph approach, we devise a simple but powerful strategy, i.e., finding links between the k-mers in the genome and traversing following the links, which can be done by saving only a few k-mers. To implement the strategy, we need to only select some k-mers that may not even be overlapping ones, and build the links between these k-mers indicated by the reads. We can traverse through this sparse k-mer graph to build the contigs, and ultimately complete the genome assembly. Since the new sparse k-mers graph shares almost all advantages of de Bruijn graph, we are able to adapt a Dijkstra-like breadth-first search algorithm, for the new sparse k-mer graph in order to circumvent sequencing errors and resolve polymorphisms. Availability: Programs in both Windows and Linux are available at: https://sites.google.com/site/sparseassembler/. Contact: [email protected] or [email protected] SparseAssembler2: Sparse k-mer Graph for Memory Efficient Genome Assembly

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SparseAssembler: de novo Assembly with the Sparse de Bruijn Graph

de Bruijn graph-based algorithms are one of the two most widely used approaches for de novo genome assembly. A major limitation of this approach is the large computational memory space requirement to construct the de Bruijn graph, which scales with k-mer length and total diversity (N) of unique k-mers in the genome expressed in base pairs or roughly (2k+8)N bits. This limitation is particularly...

متن کامل

Genome analysis EPGA2: memory-efficient de novo assembler

Motivation: In genome assembly, as coverage of sequencing and genome size growing, most current softwares require a large memory for handling a great deal of sequence data. However, most researchers usually cannot meet the requirements of computing resources which prevent most current softwares from practical applications. Results: In this article, we present an update algorithm called EPGA2, w...

متن کامل

Clustering of Short Read Sequences for de novo Transcriptome Assembly

Given the importance of transcriptome analysis in various biological studies and considering thevast amount of whole transcriptome sequencing data, it seems necessary to develop analgorithm to assemble transcriptome data. In this study we propose an algorithm fortranscriptome assembly in the absence of a reference genome. First, the contiguous sequencesare generated using de Bruijn graph with d...

متن کامل

Squeakr: an exact and approximate k-mer counting system

Motivation k-mer-based algorithms have become increasingly popular in the processing of high-throughput sequencing data. These algorithms span the gamut of the analysis pipeline from k-mer counting (e.g. for estimating assembly parameters), to error correction, genome and transcriptome assembly, and even transcript quantification. Yet, these tasks often use very different k-mer representations ...

متن کامل

Scaling metagenome sequence assembly with probabilistic de Bruijn graphs.

Deep sequencing has enabled the investigation of a wide range of environmental microbial ecosystems, but the high memory requirements for de novo assembly of short-read shotgun sequencing data from these complex populations are an increasingly large practical barrier. Here we introduce a memory-efficient graph representation with which we can analyze the k-mer connectivity of metagenomic sample...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1108.3556  شماره 

صفحات  -

تاریخ انتشار 2011